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ABSTRACT† 
In an iNET telemetry network, Link Manager (LM) dynamically allocates capacity to radio 

links to achieve desired QoS guarantees. Under the T&E S&T iMANPOL program, we 
developed an enhanced capacity allocation algorithm that can better cope with severe 
congestion and misbehaving users and traffic flows. We compare the E-LM with the LM baseline 
algorithm (B-LM), which employs priority-weighted allocation. The B-LM is expected to perform 
well for the majority of traffic patterns, but does not prevent an ill-behaved traffic class from 
causing excessive latency on other radio links. The E-LM ensures that each class has a 
“guaranteed” portion of the total available bandwidth that is proportional to the weight of the 
class. If the traffic loading of a class is lower than its quota, the difference can be flexibly shared 
by other classes across multiple links. If the traffic loading of a class is higher than its quota, its 
demand may still be satisfied, provided that the capacity is not taken away from well-behaved 
traffic classes that stay below their quotas. The qualitative analysis shows the E-LM provides 
lower latencies for the well-behaved links in overloading conditions and increases the overall 
system throughput when the traffic is unbalanced. We conducted extensive experiments to 
confirm that analysis, with the E-LM reducing latency of well-behaved flows up to 90%, and 
increasing overall throughput up to 65% over the B-LM. 

I. INTRODUCTION 
In a multiple-access telemetry network such as the iNET [1] Radio Access Network (RAN), 

where an RF-link is shared across geographically dispersed nodes, allocating capacity to achieve 
QoS guarantee for multiple mission priority levels is a challenging task. The iNET network-
based architecture provides this functionality through the Link Manager (LM) [2][3]. In the LM 
configuration, every QoS class is assigned a “class weight” based on DSCP, and every link is 
assigned “link priority weight” based on Mission Service Level Profile (MSLP) Weight/Priority. 
The LM instance at a ground node obtains the current per-mission/per-QoS class traffic demands 
and queue depths from airborne Test Articles (TAs) and ground network nodes (Figure 1). Using 
these inputs, LM acts as a TDMA controller to allocate slots by assigning RF channel capacity. It 

† The authors would like to thank the Test Resource Management Center (TRMC) Test and Evaluation/ Science 
and Technology (T&E/S&T) Program for their support. This work was funded by the T&E/S&T Program through 
the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI), Contract No. 
W900KK-09-C-0021. The Executing Agent and Program Manager work out of the AFTC. 412 TW-PA-14256 
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does so through generation of Transmission Opportunities (TxOps) messages that establish 
uplinks and downlinks and allocate transmission resources based on packet and mission priority. 

The iNET Management and Operations with Policy Controls (iMANPOL) program developed 
several techniques to provide end-to-end QoS [4] for advanced telemetry networks. In particular, 
the iMANPOL capacity allocation algorithms are designed to help LM deal with difficult 
scenarios of severe congestion and ill-behaving users and traffic flows. The underlying premise 
is that protecting “well-behaved” links (i.e., the ones that do not overload the system at the 
expense of other links) and penalizing “ill-behaved” ones (i.e., the overloading links) is in line 
with demonstration/anticipated CONOPS for the test range networked telemetry system. 

In the course of the project, these algorithms have been adapted for the LM architecture, 
implemented, and validated. The modeling and evaluation effort has confirmed the feasibility 
and value of the presented approach. 

The rest of the paper is 
organized as follows. Section II 
describes and compares different 
capacity allocation algorithms. 
Performance evaluation study is 
presented in Section III. Section IV 
concludes the paper. 

II. CAPACITY 
ALLOCATION 

The goal of capacity allocation is 
to minimize latency when traffic 
that exceeds the current allocation 
is sent to the radio. If the allocation 
can be adjusted to traffic demand, it 
will reduce the possibility of data 
loss on radio queues due to 
overflow or timeout conditions. 

Capacity allocation algorithms should follow sound Traffic Management principles to cope with 
three conditions: (1) Severe congestion, (2) Bursty traffic (VBR, On/Off), and (3) Ill-behaving 
users and traffic flows. (An ill-behaving flow is one that offers more traffic than indicated by its 
priority relative to other flows.) 

A. Baseline Algorithm (B-LM) 
The B-LM allocates on-demand capacity in proportion to the queue weight and the share of 

demand that the given queue contributes to its associated traffic class among all links. After 
minimum capacity is allocated to each traffic class (to guarantee basic fairness), the remaining 
on-demand capacity is iteratively allocated to each traffic class in proportion to traffic class 
capacity demand ratio: 

Demand ratio = (Link weight)*Class weight *(Class demand/Total class demand) 
Allocation = (Total capacity) * Demand ratio 
The B-LM algorithm is expected to perform well for the majority of traffic patterns. 

B. Enhanced Algorithm (E-LM) 
In the E-LM algorithm developed under the iMANPOL program, each class has a 

“guaranteed” portion of the total available bandwidth (called “quota”) that is proportional to the 

 
Figure 1: High-Level LM System Architecture 
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weight of the class. Quota is computed dynamically as the fair share of currently available on-
demand capacity. 

When applied to high priority traffic, quota prevents possible starvation of low priority traffic, 
thereby ensuring fairness. The quota for high priority flows will be higher than for low priority 
flows proportional to the priority ratio, i.e., quotahigh / quotalow = weighthigh / weightlow. An 
ill-behaved class, i.e., the one exceeding its quota, may be degraded, but it should not adversely 
impact other classes. If the traffic loading of a class is lower than its quota, the difference is 
shared by other classes. If the traffic loading of a class is higher than its quota, its demand may 
still be satisfied, provided the loadings of some other traffic classes are less than their quotas. 

These principles are applied and are the most effective in presence of multiple traffic classes 
and multiple links. The flow chart of the E-LM algorithm is shown in Figure 2. 

In the first step, the algorithm allocates capacity equal to min (Quota, demand), where Quota 
= (Total capacity)*(Link priority weight)*(Class weight)/(Total weight). The quota 
depends on configured link/class weights (fixed) and available capacity (varying). However, it 
does not depend on demand, which prevents greedy flows from capturing too much capacity in 
overload conditions. The latency experienced by non-overloading flows will thus be reduced 
thanks to the application of the quota. 

In the second step, remaining capacity is distributed among queues according to demand and 
weight. 

 
Figure 2: E-LM Algorithm 

C. Qualitative Comparison 
Compared with the LM baseline algorithm (B-LM), which is relatively simple to configure, 

the enhanced algorithm (E-LM) has more dependencies on various parameters in Layers 2 and 3. 
As to the performance, if the offered load does not exceed the total on-demand capacity, there 
should be no difference between the B-LM and the E-LM. 

However, since the B-LM does not differentiate ill-behaved and well-behaved flows, it runs 
the risk of allocating capacity to well-behaved flows only after their queues experience excessive 
buildup. Consequently, an ill-behaved class may punish its own class in other missions/links, 
resulting in excessive latency. Additionally, capacity may be underutilized, reducing the overall 
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throughput of the system if loading of different traffic classes is “orthogonal” across links (i.e., 
each traffic class is on a separate link). 

The E-LM should work well regardless of the overloading conditions as each traffic queue is 
guaranteed its quota. Only ill-behaved links and traffic classes with traffic loadings exceeding 
their quotas get penalized. The E-LM should protect well-behaved flows, and may satisfy 
demands of the ill-behaved flows if the loadings of some traffic classes are less than their quotas. 
Finally, the E-LM should significantly reduce latency of well-behaved queues because their 
quotas are guaranteed regardless of the presence of ill-behaved flows. 

III. PERFORMANCE EVALUATION 
We performed an extensive performance evaluation of both algorithms in two different 

platforms. A Linux testbed allowed us to use real traffic and queue implementation in a 
simplified framework, where the objective was to capture and verify main behavior aspects. 
However, the Linux testbed has the limitation of not modeling certain details such as: 
• Timing of queue draining based on LM commands, 
• Interplay between MAC and Traffic Engineering (TE) queues at the IP layer, 
• Pre-built Code Blocks. 

Hence, all test cases have been subsequently replicated in a higher fidelity OPNET LM 
environment. 

A. Linux Testbed 
To implement iNET Traffic Engineering (TE) Queues, the testbed shown in Figure 3 

enhances the Hierarchical Token Bucket (HTB) queue provided in Linux kernel. To control the 
queue remotely, the LM sends UDP datagram (emulating TxOp) every 100ms to the VMs 
(emulating the TAs) containing capacity assignments. The HTB in the VM responds with its 
queue statistics (e.g., traffic loading and queue depth reports). The LM receives the reports, 
computes per-link capacity allocations using one of the two algorithms, and sends allocation 
results to the VMs in the next epoch. The HTB analyzes the datagram from the LM and drains 
packets from the HTB queue structure according to the per-link capacity allocations. 

We collected the following metrics: 
Throughput: Average rate of data 

delivery, in megabits per second (Mbps). 
Delay: Queuing delay in the Linux kernel, 

in milliseconds (msec). 
Jitter: The average inter-packet arrival 

time measured at the destination in msec (as 
defined in IETF RFC 3550). 

B. OPNET LM Testbed 
In OPNET experiments, we used offered 

traffic estimates per TE queue instead of TE 
queue depth as the estimate of traffic demand. 

This approach provides better representation of actual traffic demands when the TE queues are 
saturated. It also accounts for traffic buffered at both TE and MAC queues. As shown in Figure 
4, statistics are measured for incoming IP traffic (red arrow between “ip” and “net_intf”) at the 
input of the net_intf process model before IP packets are forwarded to each TE queue. We 
collected the following metrics: 

 
Figure 3: Linux Testbed 
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Throughput: Application traffic received (per-queue) in bytes/sec. Transport Layer (UDP or 
TCP) traffic received (per-link), which will be forwarded to the application layer. 

Latency (End-to-end Delay): Time taken for the packet to reach its destination, measured as 
the difference between the time a packet arrives at its destination and the creation time of the 
packet, measured in seconds (sec). 

Queue Depth: Traffic Engineering (TE) queue depth at Test Articles. 

 
 

Figure 4: LM OPNET Model Figure 5: LM OPNET Configuration Parameters 

To configure the E-LM algorithm in OPNET, we needed to appropriately map traffic load 
between IP and PHY layers. The E-LM uses the concept of ‘quota’ derived from the PHY layer 
“working capacity” resource. Hence it needs to know traffic demand at PHY layer, which it 
calculates by multiplying measured load (at the IP layer) by the so-called ‘X-factor’: 

X = {all layers under IP layer overheads (MAC Frame Bytes, FEC Coding 2/3 Rate, 
Burst Sequence Header Bytes, ASM Bytes, etc) + IP packet size} / IP packet size 

‘Effective PHY load’ = ‘X’ times ‘IP layer load’ 
The result is a traffic demand viewed in the PHY layer. Inside the E-LM algorithm, this PHY 

layer traffic demand is compared with the ‘quota’. The value of the ‘X-factor’ was derived both 
analytically and experimentally and added to the LM parameter set (Figure 5). 

C. Test Cases and Performance Results 
We defined a number of test cases summarized in Figure 6: Test Cases 1–4 are tailored to 

create overload conditions in selected queues, mixing CBR, VBR, and bursty ON-OFF traffic; 
Test Case 5 is tailored to show handling of highly unbalanced traffic loading both within and 
across links; and Test Case 6 replaces “over-loading UDP traffic” with TCP flow in one queue. 

Consider Test Case 1 (Figure 7), which uses customized CBR test flows with periodic packet 
arrival and fixed-size packets of 8 KB. The total on-demand capacity across all links and queues 
is 8Mbps, whereas the total offered load is 12.8Mbps. Links 2 and 3 are below their load quota 
and Link 1 (Queue 1) exceeds its load quota. 

LM Parameter Value
TDMA Duration (Epoch) 100 msec

TDMA Guard Time 1 msec

Number of Active Links (down links) 3

Number of Queues (per link) 3

TE Queue Size 64 Kbytes

MAC Queue Size 32 Kbytes

Initial Working Capacity 8 Mbps

Minimum Capacity per link 493460 bps

Radio Channel Data Rate 34.36558 Mbps

X-Factor*: (PHY Layer Downlink Working 
capacity) / (IP Layer Received Traffic)

3.89
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Figure 6: Test Cases Synopsis 

 
Figure 7: Configuration of Test Case 1 – High-loading flows shown in red 

As depicted in Figure 8 and Figure 9, the Enhanced-LM and Baseline-LM show similar 
throughput performance, with the E-LM showing small increase for the low-loading links (7% 
overall, more than 16% for the impacted traffic class in Queue 1) and 17% decrease for the high-
loading link (limited to the offending class in Queue 1). 

 
Figure 8: Test-Case 1 Results – Per-Link UDP Throughput Performance (OPNET) 
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2 Customized test flows CBR Lo-priority links 2 and 3

2.1 (2) with addition of ON-OFF traffic CBR Lo-priority links 2 and 3

3 Customized test flows VBR Hi-priority link1
3.1 (3) with addition of ON-OFF traffic VBR Hi-priority link1

4 iNET flows VBR and CBR Lo-priority links 2 and 3
5 Customized test flows with 

orthogonal loading**
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6 Customized flows with one TCP flow CBR and TCP None (except a TCP flow)
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Figure 9: Test-Case 1 Results – Per-Queue Application Demand Throughput Performance (OPNET) 

Figure 10 shows that the enhanced-LM significantly (by 76%) reduces average latency on 
well-behaved/low-loading links (Links 2 and 3), while latency on the overloaded Link 1 is 
increased by 27%. The observed latency improvements for the E-LM are achieved by the 
significantly reduced queue depths (Figure 11) on well-behaved/low-loading links. 

 
Figure 10: Test-Case 1 Results – Latency Performance (OPNET) 
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Figure 11: Test-Case 1 Results – TE Queue Depth Performance (OPNET) 

The experimental results confirmed our qualitative analysis. When the high priority link (Link 
1) was overloaded, the E-LM reduced overall latency (by >38% on average). For traffic on the 
low priority, well-behaved links (Link 2 and 3), the latency decrease is more significant (>76% 
on average), while the high priority, ill-behaved traffic’s latency was increased (~27%). Latency 
decrease is achieved with small degradation to the throughput performance on overloaded link, 
and with a small increase of throughput performance on well-behaved links. 

 
Figure 12: Test-Case 1.1 Results – Per-Link UDP Throughput Performance (OPNET) 

Test Case 1.1 is an extension of Test Case 1 with an ON-OFF traffic model. The E-LM and 
the B-LM show similar throughput performance, with the E-LM producing small increase for the 
low-loading links and small decrease (13%) for the high-loading link (Figure 12). The E-LM 
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also significantly reduces average latency on well-behaved/low-loading links (Link-2 and 3) by 
60%, while latency on overloaded Link 1 increased by 24% (Figure 13). In both test cases, the 
latency decrease is achieved without degrading throughput or jitter performance (Figure 14). 

 
Figure 13: Test-Case 1.1 Results – Latency Performance (OPNET) 

 
Figure 14: Test-Case 1 Results – Jitter Performance (Linux) 

Test Case 5 uses highly unbalanced, but not overloaded traffic with only one queue active per 
link, i.e., “orthogonal” loading: Link 1, Queue 1 (0.4 Mbps); Link 2, Queue 2 (3.6 Mbps); and 
Link 3, Queue 3 (3.6 Mbps). The total offered load is 7.6 Mbps vs. 8 Mbps of the available on-
demand capacity. Link 2 and 3 are over their load quota and Link 1 is below the load quota. As 
shown in Figure 15, the E-LM significantly increases overall throughput (by >65%), with the E-
LM and B-LM showing similar throughput performance for the low-loading Link 1. 

IV. CONCLUSION 
The Enhanced-LM clearly performs better for unbalanced, overloaded systems. By utilizing 

the concept of allocation “quota,” this algorithm protects well behaved traffic flows. Both the 
qualitative analysis and the experimental results (in Linux testbed as well as OPNET 
environment) showed that E-LM algorithm provides better protection for the low loading links in 
overloading conditions than Baseline-LM. The E-LM shows significantly better latency 
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(improvements vary from 6% to over 60% in our experiments) for low-loading traffic without 
degrading its throughput and jitter. For traffic in well-behaved links, the latency decrease is even 
more significant (by 25%–90% on average). These results hold for both CBR and VBR traffic 
with multiple ON-OFF traffic scenarios (i.e., periodic bursting). E-LM also significantly 
increases throughput (>65%) for an extremely unbalanced traffic loading and does not cause 
transient instability when traffic loading level changes. The experiments also demonstrated that 
having even a single TCP flow can cause overload conditions. In this case, the E-LM better 
protects the low-loading UDP flows, similar to those non-TCP test-cases. 

Both baseline and enhanced algorithms can coexist in the Link Manager, either statically 
configured or dynamically switched depending on traffic conditions. In the latter case, additional 
logic is needed to detect when the system is under stress due to (1) severe overload or (2) highly 
unbalanced traffic patterns. If such a situation occurs, the E-LM is activated. When traffic 
volume/patterns return to a normal operational regime, the B-LM is re-activated. 

At the conclusion of the iMANPOL program, the E-LM has been integrated in the LM 
OPNET model that can be used to generate the operational code for a target deployment 
platform.i 

 
Figure 15: Test Case 5 Results: Per-Link UDP Throughput Performance 
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